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A field-theoretic representation is presented to count the number of con- 
figurations of a single self-avoiding walk on a hypercubic lattice in d dimensions 
with periodic boundary conditions. We evaluate the connectivity constant as a 
function of the fraction f of sites occupied by the polymer chain. The meanfield 
approximation is exact in the limit of infinite dimensions, and corrections to it 
in powers of d-I can be systematically evaluated. The connectivity constant and 
the site entropy calculated throughout second order compare well with known 
results in two and three dimensions. We also find that the entropy per site 
develops a maximum at f >  1 -(2d) t. For d= 2 (d= 3), this maximum occurs 
at f ~  0.80 ( f~  0.86) and its value is about 50% (30%) higher than the entropy 
per site of a Hamiltonian walk (f  = 1). 

KEY WORDS: Self-avoiding walks; field theory; connectivity constant; 
entropy; d i expansion; polymer melt. 

1. I N T R O D U C T I O N  

Long polymer chains in solution,  melt, or solid state are usually modeled 
by self-avoiding walks on regular lattices or in the con t inuum.  (1'2) The 

properties of self-avoiding walks have played an impor tan t  role in our  

unders tand ing  of the statistical mechanical  theories of, for example, 
polymer crystallization, polymer  liquid crystals, segregation problems 

involving different types of polymers, (1'2) and  the large-scale universal  static 
and dynamical  properties of dilute and  semidilute solutions of polymers. (2) 

One  of the most  studied quant i t ies  in the extensive literature on self- 
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avoiding walks (SAW) on regular lattices is the connectivity constant 
defined by ~2) 

l n # = M  l l n Z l  (1) 

in the thermodynamic limit of N ~ oo and M ~ oe. The quantity Z~ is the 
one-chain partition function, that is, the total number of configurations of 
a single self-avoiding polymer of molecular weight M (number of lattice 
sites occupied by the chain) confined into a volume N (total number of 
sites of the regular lattice). Figure 1 shows a self-avoiding polymer chain on 
a square lattice. 

A dilute SAW (polymers in dilute solutions) corresPonds to the limit 
of vanishingly small monomer volume fraction f [ f =  (M/N)~0 as 
M, N--* oo]. In the opposite limit of finite concentrations, such that 
0 < f <~ 1, we have a dense SAW which describes properties of melts or of 
the solid state of macromolecules. At f = 1, the walk covers all lattice sites 
(a Hamiltonian walk). 

In the dilute limit of f-~0,  the connectivity constant #(0) [NO) 
denotes the connectivity constant at f =  0] for regular lattices in two and 
three dimensions was calculated using enumeration studies in conjuc- 
tion with Pad6 approximants or the ratio method. ~3) Also, /40) for hyper- 
cubic lattices in four, five and six dimensions was evaluated employing the 
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Fig. 1. A typical configuration of a self-avoiding polymer chain of molecular weight M on a 
square lattice of N sites. Periodic boundary conditions along all directions are taken. In the 
thermodynamic limit of N, M --* oo, the volume fraction f ~ M/N  varies from 0 to 1 as the 
model describes denser paths ranging from a dilute SAW to a Hamiltonian walk. 
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same methods. (3~ The best values for square and simple cubic lattices are 
#(0) = 2.6385 + 0.0003 and /~(0) = 4.6835 __+ 0.0010, respectively. The quan- 
tity /z(0) is very important in computer simulation of dilute polymer 
chains. 2 For example, the survival probability of (computer-generated) 
chains of M sites on a regular lattice with coordination number z is 
proportional to [ # ( 0 ) / ( z - 1 ) ] ~  (all other walks are self-intersecting). 

Hamiltonian walks (HW) produce the most compact packing of a 
single SAW, as all lattice sites are now occupied by monomers. 3 For a two- 
dimensional square (SQ) lattice, Gujrati and Goldstein ~8) give the bounds 

~ M ( 1 )  ~ /*SQ(1  ) ~ ]~iCE(1) (2 )  

where/~M(1 ) = G/rc ~ 1.338 is the exact value of the connectivity constant of 
an HW on a Manhattan lattice calculated by Kasteleyn ~9) (G is the 
Catalans constant), and/liCE(1 ) =  (4/3)3/2~ 1.5396 is the analog for the six- 
vertex model solved by Lieb. ~1~ Schmaltz e ta l . ,  (1~) using strip methods, 
calculated /~SQ(1)~ 1.472 in accordance with the bounds of ref. 8. To our 
knowledge, no data are available for Hamiltonian walks in three (or more) 
dimensions. 

Orland et al. ~2) presented a field-theoretic representation of the 
problem of counting the total number of closed Hamiltonian paths on 
regular lattices of any dimensionality with periodic boundary conditions. 
They predicted the mean field value of #(1) = z/e. and showed that one-loop 
corrections vanish. In two dimensions and for an square lattice (z=4) ,  
their mean field value is surprisingly close to that of Schmaltz et al. ( m  

Unfortunately, it is not clear how to extend their elegant formulation of the 
Hamiltonian walk problem to the case that the walk does not visit all sites, 
that is, for 0 ~ f <  1. Recently, Duplantier and co-workers have obtained 
interesting results for two-dimensional dense self-avoiding walks. (6'7'13) In 
particular, Duplantier and Saleur (~3) evaluated numerically the connectivity 
constant t iPs(f)  as a function of the fraction of sites f occupied by the walk 
on a square lattice using transfer matrix methods, obtaining a /~Ds(f) 
which agrees nicely with the-best results at f =  0 (ref. 3) and f =  1 (ref. 11). 

In this paper we use a field-theoretic representation of self-avoiding 
walks on regular lattices, first proposed by Freed, (~4) to study the problem 
of calculating the total number of configurations of a single self-avoiding 
chain on a hypercubic lattice in ddimensions as it crosses over from the 
dilute case o f f =  0 to the Hamiltonian walk limit as f approaches one. This 

2 For a recent review on Monte Carlo simulation of lattice models of polymers, see 
Baumgartner) 41 See also Kremer and Binder. (5~ 

3 For a nice description of the properties of Hamiltonian walks and a complete list of 
references, see Duplantier and David] 6) See also Duplantier. 17~ 
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field representation of the SAW problem problem has been used to treat 
the problem of packing flexible, (15~ semiflexible, (16) and rod polymers (17) on 
lattices. Also, interaction energies in polymer-solvent or blend systems and 
models of polymers with monomers occupying several lattice sites have 
been considered. (~8'19) Mean field theories are of the Flory type, but now 
corrections to it in powers of z -1 ( z = 2 d  for hypercubic lattices) can be 
systematically calculated, leading to good agreement between theoretical 
estimates and available experimental and numerical data. Previous 
studies ~14-19) have considered the many-chain limit of 

p-~oe,  N ~ o e  with O<pM/N<~I  (3a) 

where p is the number of walks of molecular weight M, and only the dense 
walk case of f C0 has been considered. Instead, here we study the 
thermodynamic limit of 

M ~ o c ,  N ~ o v  with O<~f=M/N<~I (3b) 

To illustrate the theory, the connectivity constant as a function of f is 
evaluated. The mean field approximation is in accord with that of Orland 
et al. (12~ in the f = 1 limit. Leading corrections to second order in z 1 are 
obtained and the agreement between the calculated connectivity and 
available data in two and three dimensions is good. These comparisons 
show that mean field becomes better, and corrections to it due to bond 
correlations are smaller with increasing monomer volume fraction or space 
dimensionality. This is expected since we generate a d-1 expansion of the 
full theory and mean field is exact at d = oe. 

2. T H E  M O D E L  

The partition function Zp of a monodisperse system of p self-avoiding 
walks of M - 1  steps each on a hypercubic lattice of N sites and with 
periodic boundary conditions admits the following exact field-theoretic 
representation (14): 

= 1 OPZ[h,h + ] h= (4) 
Zp p! O(hh + ) p h+=0 

where Z is the grand partition function 

Z [ h , h + ] = i D [ ( ~ ] D [ O + ] [ l + X , ( ~ b , O + ) ] e x p [ - H ( O , ~ + )  ] (5) 
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The complex sources h and h + are coupled to the fields ~b and ~b +, Xi and 
H are functionals of these fields given by 

h M i h + 
+ 

c z = 2  

M - - 1  

i , j  a = l  

and the measure is 

M - - 1  N 

D[q)]D[O+] = A  1-I I~ dO~.~dO + 
c~=1  i - - I  

with A such that Z = 1 when X~-0,  gi. The subscripts i and ~ denote the 
lattice site i at the spatial position r~ and the polymerization index, respec- 
tively. A complex field representation is required, as a real one would not 
generate the desired monodisperse system of molecular weight M. (14) The 
matrix V] 1 (propagator) equals unity if i and j are nearest neighbors and 
vanishes otherwise. It is convenient to use the Fourier representation 

V o. = ~ exp [iq(r~- rs) ] [Nf(q) ] -1 (5c) 
q 

where the sum over q extends throughout the first Brillouin zone of the 
lattice, and f (q)  is the nearest neighbor structure factor 

f(q)  = ~ exp ( - iq  "a~) (5d) 
i = l  

with {a~} the vectors joining the site i at ri with its z nearest neighbors. 
The partition function Zp of Eq. (4) can be viewed as a "very large" 

Mp-point correlation function such that the use of Wick's theorem (2~ 
with the propagator of Eq. (5c) produces all possible configurations of p 
mutually and self-avoiding walks of M -  1 steps each. This field represen- 
tation is not restricted to hypercubic lattices, but applies to any regular 
lattice in d dimensions provided that the appropriate structure factor f(q)  
is used in (5c). In this work we specialize to the single-chain problem 
(p = 1) on a hypercubic lattice and in the thermodynamic limit of Eq. (3b). 

The representation used by Orland et al. ~2) to evaluate the number of 
Hamiltonian circuits is similar to that of Eqs. (4) and (5). However, these 
authors do not introduce a polymerization index and instead fields are 
n-vectors in the n--+ 0 limit. Their formulation is somewhat simpler than 
ours, but it only works for f = 1. 
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3. THE M E A N  FIELD A P P R O X I M A T I O N  

The mean field approximation to Eqs. (4) and (5) is obtained <~4-~9) by 
just retaining the q = 0 components of the fields. Then, the one-chain par- 
tition function Z MF can be derived from (4) and (5) after some algebra as 

2 ( N - M ) !  (6) 

This can be understood as follows: the combinatorial factors give the 
number of ways of choosing M sites out of N available ones. The ( z /N)  M -  1 

factor corrects for the fact that the chain is a connected object, so each site 
(but the first one) does not have about N choices, but only about z ones. 
This procedure counts twice each configuration, since a polymer chain does 
not have a direction associated to it. A Flory Huggins type of mean field 
theory would replace z by z -  1, correcting for immediate self-reversals. We 
will find that this is a reasonable approximation in the dilute limit, but it 
becomes worse as f approaches one. At f =  1, the mean field of (6) becomes 
much better than the Flory-Huggins approximation. In our approach, MF 
theory gives the leading contribution in z -1, while fluctuations induce 
corrections that we can systematically evaluate. In contrast, the 
replacement of z by z -  t in (6) would account for only some of the full 
corrections in powers of z-~. 

Using Eqs. (1) and (6) together with Stirling's formula, we obtain the 
mean field connectivity constant 

I~Mv(f) = (zle)(1 _f)-(1 i) i f  (7) 

which at f =  1 is in agreement with that of Orland et al. (12) The limit f =  0 
produces /~Mv(0)=z, in disagreement with the Flory-Huggins value of 
#FH(0) = z -  1. The entropy per site is defined as 

s = N  l lnZ1  (8) 

in the limit (3b), and its mean field value 

s ~ v  = f l n ( z / e ) -  (1 - f ) l n ( 1  - f )  (9) 

vanishes at f = 0  and reaches a maximum at f =  1 - z  t The 
Flory-Huggins mean field connectivity t f f H ( f )  and site entropy sVH( f )  are 
obtained from (7) and (9) just by the replacement of z by z - 1. 
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4. C O R R E C T I O N S  TO M E A N  FIELD 

Correlations among bonds due to the chain connectivity can be fully 
taken into account in a systematic fashion, thus producing corrections to 
mean field theory in powers of z 1. This is done by incorporating the q 4 = 0 
modes of the fields ~b and ~b+, not included in the lowest approximation, 
Eq. (6). These corrections can be cast in a diagrammatic form suited to 
calculation. Then, the full value of the total entropy of the system, In Z1, 
may be formally written as  (15'16'19) 

in Z1 = in Z ~  v + clustered diagrams (]o) 

Diagrams can be classified according to the number of bonds they contain. 
For example, the first correction to mean field consists of a single bond 
diagram as shown in Fig. 2a. The next correction contains two two-bond 
diagrams, as the bonds can either be sequential or nonsequential along the 
chain. This is illustrated in Figs. 2b and 2c. There are three three-bond 
diagrams shown in Figs. 2d-2f. [The many-chain problem produces one 
(two) additional two (three)-bond diagram(s), since bonds can now also be 
on different chains.] Clustered diagrams are grouped according to their 
topology as shown in Fig. 3. 

Rules to evaluate these diagrams are obtained from Eqs. (4) and (5) 
by systematically including the q # 0 modes of the fields. The diagrammatic 
rules have been derived by Bawendi eta/., (15A6) and they are formulated in 

(a) (b) (c) 
m I I I 

6 6 

(d) (e) (f) 

! i I 

0 6  6 ~ 5 

Fig. 2. Corrections to the mean-field approximation are conveniently written in terms of 
diagrams of m-bonds. This figure shows all possible one-, two-, and three-bond diagrams. 
Nonsequential bond are joined by a wiggly line. 

822/53,,'5-6-9 
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a somewhat different but equivalent and more general form by Nemirovsky 
et  al., (19~ so they are nor repeated here. We apply these rules in the form 
discussed in ref. 19 to evaluate the diagrams of Fig. 3. The rules remain the 
same as in previous work, (19/ but the weight of individual diagrams is 
modified, as we consider the limit of (3b) in contrast to that of (3a) studied 
before. (14-19~ Figure 3 presents all diagrams, up to O(z-2), giving non- 
vanishing contributions to In Z1 in the limit (3b). Thus, only diagrams of 
up to four bonds are required (in general, calculations to order z-m require 
the evaluation of diagrams up to 2m bonds). The values associated with the 

(a) (b) (c) 
2 , ~ ,  _~(,) , 

I 

(d) (e) 
5 

,~, f~([) ~ ~,~,v,~+,_-~:~ 
\1) 

(f) (g) 
2 

,I, 6 -  6 - y  
I i 

I 

(h) 

(i) ~ ~(~)  

Fig. 3. 

(i) 
2 2 4 

~ -  -~(F1)- ~ ) ( I )  + ~ (i)- + (i) 
All clustered diagrams to O(z -2) contributing to the entropy of a single SAW on a 

hypercubic lattice and in the thermodynamic limit (3b). 
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diagrams of Fig. 3 are listed in Table I. Using Eqs. (1) and (10) and 
Table I, we obtain, to first order in z 1, 

in #(1) = In #My _ (1 - f ) / z  + O(z-2)  (1 la) 

s ( l ) = f l n #  (1) ( l ib)  

and to second order 

In #(2)=in #(1)+ [ 1 -  1 4 ( 1 - f ) +  1 6 ( 1 - f ) 2 -  12(1- f )3 ] /6z2+  O(z 3) 

(12a) 

s (~) = f l n  #(2) (12b) 

Figures 4 and 5 show the connectivity constant # and site entropy s, 
respectively, as a function of the monomer volume fraction f for a self- 
avoiding walk on a square lattice. For comparison, we display the two MF 
quantities #Mr and #vH (sMV and sVH), the second-order result #(2) (s(2)) 
and the connectivity constant #~s (and site entropy s Ds) predicted by 
Duplantier and Saleur. (13) The best values of #(0) and #(1) mentioned in 
the Introduction are also indicated. In either figure, all curves have the 
same qualitative shape. A Flory Huggins type of mean field theory is closer 
to the best results than the alternative MF in the dilute limit, but it 
becomes much worse for a denser walk case. In fact, as remarked by 
Orland et al., (12) Eq. (7) for f =  1 gives #~av(1)=4/e, in surprisingly good 
agreement with the value predicted by Schmaltz et al. (~1) This is consistent 

Table I. Evaluation of Diagrams t o  O ( z - 2 )  ~ 

Diagram from Fig. 3 Value of the diagram 

a - M / z  

b M f / z  
c m / z  2 

d - 4 M f / z  2 

e 8 M f / 3 z  2 

f - 2 M f / z  2 

g ( - 5 M  + 2 M f ) / 2 z  2 

h 8 M f / z  2 

i ( - 6 M f  + 2 M f ) / z  2 

Values of the diagrams contributing throughout O ( z - 2 )  to the total entropy of a single SAW 
of molecular weight M on a hypercubic lattice of N sites and of lattice coordination number 
z=2d ;  f =  M / N  is the fraction of sites occupied by the polymer chain and the ther- 
modynamic limit of (3b) is taken. 
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Fig. 4. Plot of the connectivity constant # versus the volume fraction f for a single SAW on 
an square lattice: the dotted line is the mean field prediction [Eq. (7)], Flory-Huggins theory 
produces the dot-dashed line, the dashed line is the connectivity constant ,u (2) to O(z -2) 
[Eq. (12a)], and the curve #Ds (solid line) is the result of Duplantier and Saleur. (13t The best 
values of the connectivities at f =  0 (ref. 3) and f =  1 (ref. 11) are indicated by black dots. 
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Fig. 5. Site entropy versus the volume fraction for a single SAW on a square lattice. The 
mean field [Eq. (9)] and the Flory-Huggins result are indicated by dotted and dot-dashed 
lines, respectively. The curves s 12) (dashed line) and s Ds (solid line) are our result to O(z -2) 
[Eq. (12b)] and that of Duplantier and Saleur/TM 
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with the fact that corrections to our MF theory are much more important 
at smaller values of the volume fraction than at larger ones. At f =  1 first- 
order corrections to ln#  vanish [see Eq. ( l l a ) ] ,  also in accordance with 
the results of Orland et  al., in which one-loop (z-  1) corrections are zero for 
Hamiltonian circuits. Here we have also evaluated second-order corrections 
to in #(1), which are found to be very small [-Eq. (12a) for f =  1]. 

When f =  0, first-order (z 1) corrections are quite important. In fact, 
they make #<1)(0) coincide (to this order) with the Flory-Huggins result. 
That is, first order at f =  0 accounts for immediate self-reversals, changing 
the connectivity from z to z -  1. However, second-order corrections, which 
are negative, give # < z - 1 ,  as expected. Notice that the connectivity 
#DS(f) is the closest to the two best results at f =  0 and f =  1 and that our 
curves become closer to that of Duplantier and Saleur as higher corrections 
are incorporated (#MY(f) is about 50% higher than #DS at f = 0 ,  but 
#(2)(0) is only about 7% off). First-order #<1)(f), not shown is Fig. 4, falls 
between mean field and ~c)(f) .  It is clear from Figs. 4 and 5 that our mean 
field overestimates the values of the connectivity and site entropy. As 
correlations among bonds are incorporated, the theory predits lower values 
for # and s. 

Figure 6 displays the connectivity constant for a cubic lattice as a 
function of the volume fraction. In three dimensions, the only accurate 
result we are aware of is #(0)~4.68, as discussed in the Introduction. 
Again we find the same pattern as for d = 2 .  Higher-order corrections 
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Fig. 6. The volume fraction dependence of the connectivity constant  for a cubic lattice 
(z = 6) with increasing order in z 1: curves shown are the mean field result (dotted line) and 
the first-order (dashed line) and second-order (solid line) results. 
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predict lower values for #(f).  As walks become denser, one would expect 
that mean field theory improves as corrections to O(z -2) became very 
small. Thus, it is likely that the predicted mean-field value at f =  1, 
#(1)=6/e,  is a very good approximation to the exact value. As f 
approaches zero, "errors" grow larger and #MY(0) and #(2)(0) are, respec- 
tively, somewhat less than 30% and about 4% higher than the best value. 
Again, #o) falls between #My and #~2). The trends found in Figs. 4, 6, and 8, 
which show i ~ M v ( f )  and /~(2)(f) in two, three, and four dimensions, 
respectively, confirm the expectation that corrections to MF due to bond 
correlations are smaller with increasing dimensionality since MF is exact at 
d =  oe. (At d = 4  our ~t(2~(0) is less than 2% higher than its best known 
value given by Fisher and Gaunt. (3)) 

Figures 5, 7, and 9 display the site entropy s ( f )  as a function of the 
volume fraction f for a SAW on a hypercubic lattice in two, three, and four 
dimensions, respectively. Figure 5 shows that while our mean field s My 

always overestimates the value of the site entropy, the Flory-Huggins value 
s is higher than s ~ at very low volume fraction, but it becomes much 
smaller for higher values of f The entropy per site develops a maximum 
at f > l - z - L  The maximum of s My at f - 1 - z  -~ moves to the right 
(to higher volume fraction) and becomes smaller, so approaching the 
Duplantier-Saleur entropy s ~ as fluctuations are taken into account. The 
maximum of s TM at f -  1 - ( z -  1) is further away from that of s m, and its 

1.00 

Q75 
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I I ! 
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Fig. 7. Plot of the site entropy versus fraction for a single SAW on a cubic lattice (z = 6). 
The curves are the mean field entropy per site (dotted line), and the site entropies s ~  to 
O(z -1) (dashed) and s (21 to O(z -2) (solid line). 
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Fig. 8. Same as Fig. 6, but with z = 8 (hypercubic lattice in four dimensions). The lines have 
the same designation as in Fig. 6. Notice that the differences among the connectivity constants 
are somewhat  smaller than those for d = 2 (Fig. 4) and d =  3 (Fig. 6). 

value at f - - 1  is much worse [compared to sDS(1)] than those associated 
with s~V(f). Figures 7 and 9 suggest that the MF approximation for the 
entropy is rather good already at d =  3 and d =  4 as corrections to it grow 
smaller. Again, the maximum of s My, located at f =  1 - z  -1, becomes 
smaller moving toward higher f as corrections are incorporated. 

t25 Z = 8 

l.O0 

075 

O5O 

O25 

I I I 

0.00 0.25 050 0.75 1.00 

Fig. 9. Same as Fig. 7, but with z = 8. The lines have the same designation as in Fig. 7. As 
space dimensionality increases, mean field improves, and thus corrections to it become less 
significant. 
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It is now easy to understand the shape of the curve s ( f ) .  At small 
volume fraction the entropy is low, since there are few monomers available 
to contribute. The maximum does not occur at f = 1, because the presence 
of unoccupied sites provides more configurations to the system. As d ~ oo, 
the "orientational" entropy always overcomes the "translational" entropy. 
The maximum of the entropy per site is almost 50% (somewhat less than 
20%) higher than the site entropy of a Hamiltonian walk for d =  2 ( d =  3), 
and it occurs at f ~ 0 . 8 0  ( f~0 .86 ) .  

5. C O N C L U S I O N S  

Using a field-theoretic representation of a self-avoiding walk of 
molecular weight M on a hypercubic lattice of N sites and with lattice 
coordination number z = 2 d ,  we study the thermodynamic limit of 
iV, M ~ oo such that the monomer volume fraction f = M / N  remains finite 
with 0 ~< f ~ 1. 

The volume-fraction-dependent connectivity constant /~MF and site 
entropy are evaluated in the mean-field approximation and contrasted 
against predictions of a Flory-Huggins type of mean field theory. 
Moreover, our approach takes fully into account correlations among bonds 
due to the chain connectivity, which are neglected in the lowest 
approximation. This produces corrections to the MF approximation in the 
form of powers of z -  1. In this work we specialize to hypercubic lattices, so 
z = 2d, but the formalism can be easily applied to any regular d-dimen- 
sional lattice. 

The connectivity constant and the site entropy to O(z ~ 2) in two 
dimensions are compared with accurate values at f = 0 ,  (3) and at f = 1, (1l) 
and also against the recently numerical estimates ktDS(f) of Duplantier and 
Saleur. (13) The agreement is quite good. At higher dimensions, Figs. 6-9 
suggest that our second-order results become even better, since corrections 
to mean field are smaller. Mean field theory also improves at higher 
volume fraction. At f =  1, g(1) coincides with the mean field connectivity 
predicted by Orland et al. ~2) for a Hamiltonian path and first-order ( z - l )  
corrections vanish, also in accordance with ref. 12. In addition, we have 
evaluated corrections to O(z-2). 

The site entropy as a function of the volume fraction is found to 
develop a maximum at f >  1 - z  -1. In two dimensions this maximum 
occurs a t f ~  0.80 and it is about 50% higher than the entropy per site of a 
Hamiltonian walk. As dimensionality increases, the maximum moves 
toward higher f,  thus approaching f =  1, and the difference between the 
maximum value of the site entropy and that of a Hamiltonian walk 
becomes less significant. 
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